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Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?:
A preliminary theoretical study for the Gaussian filtered Navier-Stokes equations
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This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation
repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-
scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is
shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incom-
pressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar
to one appearing in the Gaussian filtered Vlasov equation derived by Klimas@J. Comput. Phys.68, 202~1987!#
and also to one derived recently by Kobayashi and Shimomura@Phys. Fluids15, L29 ~2003!# from the
tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the
numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a
seed of this numerical instability. An investigation concerning the relationship between the turbulent energy
scattering and the unstable term shows that the instability of the term does not necessarily represent the
backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large
eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can
be ideally accurate.

DOI: 10.1103/PhysRevE.68.036705 PACS number~s!: 47.11.1j, 47.27.Eq, 47.10.1g, 83.85.Pt
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I. INTRODUCTION

In large eddy simulation~LES! of turbulent flows, where
large-scale flow structures are solved directly but small-sc
eddies are modeled, numerical instability which leads to n
physical oscillation or divergence of solution has sometim
been observed. One of the well-known origins of this ins
bility is the dispersive characteristics of the numerical me
ods used to solve flow equations. In LES, centered fin
difference techniques which involve no artificial viscos
are commonly adopted even in the convection terms in
Navier-Stokes equations. That type of differencing is kno
to be unstable when the grid resolution is not sufficien
high. In order to overcome this problem, the use of hig
order fully conservative schemes@1,2# and the adaptation o
high-order filtering~or smoothing! procedures have been a
tempted@3,4#.

Another known cause of this numerical instability is
unstable property of the subgrid-scale~SGS! models
adopted. The dynamic Smagorinsky model@5#, for instance,
can predict both positive and negative eddy viscosit
While the appearance of the negative viscosity allows
description of the backscatter of kinetic energy@the inverse
energy cascade in turbulent flows, the occurrence of wh
has been confirmed@6–11# by a priori tests with direct nu-
merical simulation~DNS!#, it unfortunately causes instabilit
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in the numerical solution achieved using finite-differen
methods. This instability problem involved in the dynam
eddy-viscosity-type model has been removed by a smooth
and/or a clipping technique@5,12–14# that mollifies or elimi-
nates the negative values of the eddy-viscosity coefficie
Also, it is known that the tensor-diffusivity model@15–17#
behaves unstably in certain situations such as channel fl
and turbulent mixing layers where strong shears app
@9,11,17–19#. This instability has been considered to be d
to its incorrect near-wall scaling@17# or long-lived negative
diffusion taking place near a wall@18#. Recently, in their
study regarding a dynamic mixed model@20# Kobayashi and
Shimomura@19# have shown theoretically that in the viscou
sublayer in a turbulent channel flow, the absolute value of
negative diffusion coefficient derived from the tenso
diffusivity term can be greater than the kinematic viscos
coefficient, resulting in a negative total viscosity and con
quently leading to numerical instability.

In the present paper, we perform a theoretical study c
cerning the Gaussian filtered Navier-Stokes equations
introduce an alternative candidate for the origin of the n
merical instability in the LES of near-wall turbulence. Th
present study is motivated by the filtering problem of t
Vlasov-Poisson system, first attempted by Klimas@21,22#. In
Ref. @21#, to overcome the filamentation problem, he deriv
a filtered equation for collisionless plasma kinetics by app
ing the Gaussian filter in the velocity space to the Vlaso
Poisson system. Interestingly, although neither an appr
mation nor an assumption was made, the resulting formu
have a closed form in terms of the filtered distribution fun
tion, that is, the resulting system is solvable without a
©2003 The American Physical Society05-1
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modeling. However, the numerical solution given using t
filtered system is, unfortunately, unstable if a numeri
method other than a spectral method is employed@23#. This
numerical instability is caused by an additional term in t
filtered Vlasov-Poisson system, a cross-derivative te
yielded by the filtering, the numerical solution of which b
e.g., a finite-difference technique should be unstable and
verge. Because neither modeling nor an approximation
adopted in order to derive the filtered equation, this num
cal instability can be considered to arise only from t
Gaussian filtering. We show in this paper that a similar cro
derivative term can be found in the filtered Navier-Stok
equations without adapting any SGS model, but with
simple assumption on the streamwise velocity compon
The derived cross-derivative term is similar also to that giv
in the recent study of Kobayashi and Shimomura@19# con-
cerning a mixed SGS model, a study by which we are a
motivated. They derived this term from the tensor-diffusiv
part of a mixed model, i.e., by adapting a SGS model, wh
we do not assume a particular SGS model. From this poin
view, the present work can be considered a generalizatio
Kobayashi and Shimomura’s work. Furthermore, we po
out theoretically that the numerical instability which may
caused by the cross-derivative term does not always co
spond to backscatter; namely, the instability we predic
only due to the filtering, but not due to the physical proce
~backscatter! in turbulent flows.

As we will mention in Sec. IV, the present findings are n
simply a numerical problem but raise a question about
feasibility of accurate LES. This numerical problem appe
to indicate a performance limitation of current LES.

This paper is organized as follows: In Sec. II, we revie
and briefly reexamine the work by Klimas. In Sec. III, w
perform theoretical investigations regarding the unsta
characteristics of the Gaussian filtered Navier-Stokes eq
tions under a wall-bounded flow condition. Section IV pr
vides remarks concerning the feasibility of accurate LES~or
a limitation of current LES technique!.

II. NUMERICAL INSTABILITY OF THE FILTERED
VLASOV-POISSON EQUATION

In 1987, Klimas@21#, based on a spectral method, pr
posed a numerical scheme for the Vlasov-Poisson syste

] f

]t
1v

] f

]x
1E~x,t !

] f

]v
50, ~1!

]E

]x
5E f ~x,v,t !dv21, ~2!

and

1

,Ex50

x5,E f ~x,v,t !dvdx51,

which describes the kinetics of collisionless plasmas in
phase space (x,v). Here, this system is normalized by th
plasma frequency, the Debye length, and the thermal ve
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ity. This numerical scheme incorporates a filtering proced
with the Gaussian function in order to mollify the filament
tion @21# of the distribution functionf, which is an infinitely
fine structure resulting naturally from the fact that Eqs.~1!
and~2! have no diffusion mechanism, and cannot be resol
numerically using finite computer resources. This filteri
process, applied only to the velocity space, is carried out
the convolution

F̄~x,v,t !5E
u52`

u5`

L~v2u!F~x,u,t !du, ~3!

where(•) denotes the filtered quantity,L(X) is the Gaussian
filter function,

L~X!5
1

DA2p
expS 2

X2

2D2D , ~4!

which satisfies*X52`
X5` L(X)dX51, andD is the filter width

assumed to be constant throughout this paper. The filte
Vlasov-Poisson system can thus be expressed as

S ] f

]t D1S v
] f

]xD1E~x,t !S ] f

]v D50, ~5!

]E

]x
5E f̄ dv21. ~6!

As Klimas showed@21#, Eq. ~5! can be rewritten into a
closed form in terms off̄ :

] f̄

]t
1v

] f̄

]x
1E~x,t !

] f̄

]v
52D2

]2 f̄

]x]v
, ~7!

where the left-hand side of this equation is an advect
equation corresponding to Eq.~1! with the replacementf
→ f̄ , while the term on the right-hand side~RHS! is an ad-
ditional term yielded through the filtering process. For t
convenience of readers, we show concretely the derivatio
this additional term. This cross-derivative term is given fro
the second term of Eq.~5! as follows:

S v
] f

]xD5E L~v2u!u
] f

]x
du52E ~v2u!L~v2u!

] f

]x
du

1vE L~v2u!
] f

]x
du52FD2L~v2u!

] f

]xG
2`

`

1D2E L~v2u!
]2f

]x]u
du1vE L~v2u!

] f

]x
du

5D2S ]2f

]x]v D1vS ] f

]xD ,

and thus,

S v
] f

]xD5v
] f̄

]x
1D2

]2 f̄

]x]v
. ~8!
5-2
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Here, we used

S ] f

]v D5
] f̄

]v
.

Unfortunately, the numerical solution of Eq.~7! tends to
be unstable when a numerical method, except for the spe
method~such as a finite-difference or a finite-volume tec
nique!, is employed@23#. Applying the coordinate transfor
mation of

2x5x12y1 , 2v5x11y1 , ~9!

the cross-derivative term is rewritten as

2D2
]2 f̄

]x]v
5D2

]2 f̄

]y1
2

2D2
]2 f̄

]x1
2

. ~10!

The last term of this equation, having a negative coefficie
represents inverse~or retrograde! diffusion, which is known
to produce an unstable numerical solution using a fin
difference method or others. This nature of the cro
derivative term leads to numerical instability and a result
divergence of solution. Note that this instability is not phy
cal but only numerical. The true solution of Eq.~7! should
not diverge, becausef depending on the pure advection equ
tion ~1! is an invariant, and the inequality

min~ f !<min~ f̄ !,max~ f̄ !<max~ f !

is always true.~Note that the Gaussian function is positive
defined. If a nonpositive defined filter such as the spec
cutoff filter is used, this relation does not always hold.!

We can prove Eq.~10! by a more intuitive manner. First
we express the term in a finite-difference form,

]2 f̄ ~x,v !

]x]v
5 limDx→0,Dv→0

S f̄ 1,12 f̄ 21,1

2Dx
2

f̄ 1,212 f̄ 21,21

2Dx

2Dv
D ,

~11!

where

f̄ i , j[ f̄ ~x1 iDx,v1 j Dv !.

Consequently, we rewrite this as follows:

]2 f̄ ~x,v !

]x]v
5 lim

Dx→0,Dv→0
S f̄ 1,122 f̄ 0,01 f̄ 21,21

4DxDv D
2 lim

Dx→0,Dv→0
S f̄ 21,122 f̄ 0,01 f̄ 1,21

4DxDv D .

As a result, we found

2D2
]2 f̄

]x]v
52D2a

]2 f̄

]j2
1D2a

]2 f̄

]§2
, ~12!
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where j and § are the spatial coordinates parallel

(Dx,Dv)
→

and (2Dx,Dv)
→

, respectively, anda is a positive
constant. This result is equivalent to Eq.~10!, and the first
term on the RHS of Eq.~12! represents numerically unstab
inverse diffusion.

Note that the cross-derivative term was derived witho
applying any approximation and modeling, meaning that t
numerically unstable term is given not by an approximat
or modeling, but by the Gaussian filtering only. Meanwhi
the magnitude of this term’s coefficient increases with
filter width D, revealing that increasingD to obtain a
smoother profile off makes the governing equation mo
unstable.

III. INVESTIGATION OF A NAVIER-STOKES CASE

Filtering approaches have been attempted not only
plasma kinetics analysis but also for turbulent flow comp
tations. In particular, the LES of turbulence has employ
various kinds of SGS stress models which are construc
based on a filtering approach and statistical properties of
bulence@11,24#. In this section, we show theoretically tha
the filtering process may, at least in a certain case, also
rise to numerical instability in flow computations.

The Navier-Stokes equations for incompressible flu
flows are expressed as

]ui

]t
1

]ujui

]xj
52

]p

]xi
1n

]2ui

]xj]xj
for i 51,2,3,

]ui

]xi
50,

where Einstein’s summation convention is assumed, andui
5ui(x1 ,x2 ,x3 ,t) is the velocity component,p is the pressure
divided by the constant fluid density, andn is the kinematic
viscosity. Applying a spatial filter to these equations, o
obtains

]ūi

]t
1

]ujui

]xj
52

] p̄

]xi
1n

]2ūi

]xj]xj
~13!

or

]ūi

]t
1

]ū j ūi

]xj
52

] p̄

]xi
1n

]2ūi

]xj]xj
2

]t i j

]xj
, ~14!

t i j [uiuj2ūi ū j

with

]ūi

]xi
50, ~15!

wheret i j is the so-called SGS stress tensor which gener
needs to be modeled.
5-3
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In the present paper, in order to simplify discussion
assume that the filter is applied only in thex2 direction.
Furthermore, for a while we focus our attention only on o
term in Eq.~13!,

]uju1

]xj
5

]u1u1

]x1
1

]u2u1

]x2
1

]u3u1

]x3

5S u1

]u1

]x1
D1S u2

]u1

]x2
D1S u3

]u1

]x3
D , ~16!

which is the filtered convection term in the equation forū1,
and suppose

u15bx2 with b5b~x1 ,x3! ~17!

is true at an instant. The velocity field described by Eq.~17!
represents a shear flow such as that forming near a solid
parallel to the (x1 ,x3) plane and located atx250. In Ref.
@10#, which investigates the energy cascade in turbulent w
bounded flows and analyzes the performance of ed
viscosity models in the LES, Ha¨rtel and Kleiser performed
ana priori test of near-wall turbulent flows by DNS in orde
to investigate the energy transfer between the GS and
components constructed by filtering DNS data. They h
shown that the dissipation of the streamwise componen
kinetic energy (u1

2/2 in the present case! provides a dominan
contribution to the total dissipation of kinetic energy~see
Fig. 6 of Ref.@10#!. This is why we pay much attention t
term ~16!. In what follows, we perform explicitly the convo
lution in Eq.~16! in order to have a closed formula, and th
discuss the characteristics of the resulting formula.

Substituting Eq.~17! into Eq. ~16! yields

]uju1

]xj
5S bx2

]u1

]x1
D1bū21

]b

]x3
~u3x2!. ~18!

Recalling Eq.~8!, the first term on the RHS is rewritten int
a closed form as

S bx2

]u1

]x1
D5ū1

]ū1

]x1
1D2b

]2ū1

]x1]x2
,

where we use

ū15u1 . ~19!

Also, the last term of Eq.~18! can be rewritten into a close
form because

~u3x2!5D2
]ū3

]x2
1x2ū3 .

As a result, we have
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]xj
5ū1

]ū1

]x1
1D2b

]2ū1

]x1]x2
1bū2

1
]b

]x3
S D2

]ū3

]x2
1x2ū3D .

Rewriting this as

]uju1

]xj
5ū1

]ū1

]x1
1D2b

]2ū1

]x1]x2
1

]bx2

]x2
ū21D2

]b

]x3

]ū3

]x2

1
]bx2

]x3
ū35ū j

]ū1

]xj
1S D2b

]2ū1

]x1]x2
1D2

]b

]x3

]ū3

]x2
D ,

the total SGS stress forū1 can be represented as

]t j 1

]xj
5D2b

]2ū1

]x1]x2
1D2

]b

]x3

]ū3

]x2
. ~20!

In order to confirm this result, we show here an altern
tive derivation of Eq.~20!. Yeo @25# and others@26# have
derived ~and extended@27#! a relation equation, which can
be applied to any functionsa andb, expressed as

ab2āb̄5 (
n51

`
D2n

n!

]nā

]xn

]nb̄

]xn
, ~21!

where(•) indicates the Gaussian filtering in thex direction
andx is an independent variable ofa andb. This equation is
very interesting because the RHS terms contain only filte
functionsā andb̄. Using this and assumingx5x2, we have

t115D2b
]ū1

]x2
, ~22!

t125D2b
]ū2

]x2
, ~23!

t135D2b
]ū3

]x2
. ~24!

These results combined with Eqs.~15! and ~19! recover Eq.
~20!.

We analyze here characteristics of Eq.~20!. Using Eqs.
~17! and ~19!, Eq. ~20! can be reconstructed as

]t j 1

]xj
5D2b

]2ū1

]x1]x2
1U

]ū1

]x3
, ~25!

U[
D2

x2

]ū3

]x2
. ~26!

The last term of Eq.~25! represents the advection ofū1 in
the x3 direction and hence does not change the amplitude
ū1. This term may be solved stably using a numeric
method for the convection terms with a sufficient grid res
5-4
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lution. The first term on the RHS of the same equation i
cross derivative ofū1, being quite similar to one appearin
in the filtered Vlasov equation~7! and also to one derived b
Kobayashi and Shimomura@19# from the tensor-diffusivity
term. Namely, this term should be numerically unstable. T
coefficient of this term increases asD increases, correspond
ing to the fact that LES tends to be more unstable whe
larger grid width is assumed. This coefficient also increa
as the absolute value ofb increases, implying that a stron
shear is more apt to cause numerical instability.@We should
note here that the cross-derivative term is unstable in
cases of bothb.0 andb,0, since the cross-derivative ca
be decomposed into two diffusion terms having differe
signs, as shown in Eq.~10!.# Actually, numerical instability
in LES has frequently been observed in flow computatio
involving strong shears, as mentioned in Sec. I. The pre
result is consistent with this fact.

Let us consider the energy dissipation due to the S
stress~20!. The energy transfer forū1

2/2 between the GS an
the SGS components is described by

«15t1 j

]ū1

]xj
, ~27!

whose negative value indicates forward scatter, whereas
positive value indicates backscatter. Substituting Eqs.~22!–
~24! into Eq. ~27! and rewriting using Eq.~15! yield

«15bD2S ]ū3

]x2

]ū1

]x3
2

]ū3

]x3

]ū1

]x2
D . ~28!

This reveals that«1 can be either negative or positive. If, fo
example,]ū1 /]x350 is true at a certain location, Eq.~28!
reduces there to

«152~bD!2
]ū3

]x3
,

which is negative when]ū3 /]x3 ~the spanwise derivative o
the spanwise velocity component! is positive, but is positive
when]ū3 /]x3 is negative.

We provide here a note on assumption~17!. Careful read-
ers may think that the velocity profile assumed in Eq.~17! is
sufficiently smooth and hence need not be modeled. T
natural question can be solved by considering the discu
Gaussian filtering to be the secondary filtering; that is,
velocity ui is one already smoothed out by a primary filte
ing. In several SGS models~e.g., the scale similarity@28#,
the dynamic Smagorinsky@5#, and dynamic mixed
@29,20,30# models!, a twofold filtering is adapted based o
the scale invariance of small-scale structures in turbu
flows @11#. In fact, the numerical instabilities in LES hav
been observed especially when the dynamic Smagorinsk
the tensor-diffusivity models are employed~the latter model
does not employ an explicit filter but corresponds to a fir
order approximation of the scale-similarity model when t
Gaussian filtering is assumed@27#!, so that some specia
03670
a

e

a
s

e

t

s
nt

S

he

is
ed
e

nt

or

-

treatments for preventing the instability are necessary
these cases@5,9,11–14,17–19#.

Finally, we briefly discuss

S u1

]ui

]x1
D for iÞ1,

which is a convection term in the filtered Navier-Stok
equations forui ( iÞ1) in a nonconservative form. Substitu
ing assumption~17! into this, and performing the convolu
tion explicitly or by employing Eq.~21!, we obtain

S u1

]ui

]x1
D5ū1

]ūi

]x1
1D2b

]2ūi

]x1]x2
. ~29!

The last term of this equation is a cross derivative of
dependent variable and is almost the same as one de
previously. This result shows that the filtered equations foui
( iÞ1) may also be unstable in the case we have conside

IV. SUMMARY AND DISCUSSION

The theoretical results given in the preceding section
be summarized as follows: At least in a certain case,
application of the Gaussian filter to the Navier-Stokes eq
tions results in the appearance of a numerically unstable t
even though no SGS model is adopted. This unstable t
does not always give rise to backscatter of kinetic ene
implying that the numerical instability that the cros
derivative term may cause does not correspond to the ph
cal process, backscatter; this conclusion may explain the
merical results provided by Kobayashi and Shimomura@19#
to investigate the signs of the eddy viscosity and of the
fective viscosity derived from the tensor-diffusivity term.

The present findings raise the significant question whe
a numerically stable SGS model can be an ideal model
describing turbulence, or, in other words, whether a S
model that can provide ideally accurate results is numeric
stable. Our theoretical results indicate that it is in princip
possible that a numerically unstable term appears through
filtering process. Namely, if one wants to obtain an accur
LES result under the condition of Eq.~17!, he must be faced
with the numerically unstable equations~20! and~29!, which
cannot be solved stably by ready-made finite-differen
schemes or others. This difficulty makes a limitation of c
rent LES manifest.

There may be two paths toward overcoming this dif
culty: the adaptation of a kind of artificial smoothers, whi
may violate an accurate solution but has been attempted,
the construction of a stable and accurate solver for the
merically unstable equations. The latter might be extrem
difficult to realize, but will be a challenging task.

Furthermore, the present findings may be useful in c
sidering the numerical instabilities of the existing SGS mo
els. For instance, we anticipate that the unstable propert
the filtered Navier-Stokes equations may play a role in
LES using the pure scale-similarity model whose unsta
5-5
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property has been considered to result from the model’s
sufficient diffusivity@9,11,28#. Other instabilities observed in
LES might also be interpreted partly based on the pres
results, though there is no doubt that the instability of
dynamic Smagorinsky model is due to the negative visco
which accompanies backscatter.
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@10# C. Härtel and L. Kleiser, J. Fluid Mech.356, 327 ~1998!.
@11# C. Meneveau and J. Katz, Annu. Rev. Fluid Mech.32, 1

~2000!.
@12# U. Piomelli, Phys. Fluids A5, 1484~1993!.
@13# C. Meneveau, T.S. Lund, and W.H. Cabot, J. Fluid Mech.319,

353 ~1996!.
@14# R. Akhavan, A. Ansari, S. Kang, and N. Mangiavacchi, J. Flu

Mech.408, 83 ~2000!.
@15# A. Leonard, Adv. Geophys.18, 237 ~1974!.
.

,

@16# R.A. Clark, J.H. Ferziger, and W.C. Reynolds, J. Fluid Mec
91, 1 ~1979!.

@17# S. Liu, C. Meneveau, and J. Katz, J. Fluid Mech.275, 83
~1994!.

@18# G.S. Winckelmans, A.A. Wray, O.V. Vasilyev, and H. Jea
mart, Phys. Fluids13, 1385~2001!.

@19# H. Kobayashi and Y. Shimomura, Phys. Fluids15, L29 ~2003!.
@20# B. Vreman, B. Geurts, and H. Kuerten, Theor. Comput. Flu

Dyn. 8, 309 ~1996!.
@21# A.J. Klimas, J. Comput. Phys.68, 202 ~1987!.
@22# A.J. Klimas and W.M. Farrell, J. Comput. Phys.110, 150

~1994!.
@23# H. Figua, F. Bouchut, M.R. Feix, and E. Fijalkow, J. Compu

Phys.159, 440 ~2000!.
@24# M. Lesieur and O. Me´tais, Annu. Rev. Fluid Mech.28, 45

~1996!.
@25# W. Yeo, Ph.D. thesis, Ohio State University, 1987.
@26# A. Leonard, AIAA Pap. No. 97-0204~1997!.
@27# D. Carati, G.S. Winckelmans, and H. Jeanmart, J. Fluid Me

441, 119 ~2001!.
@28# J. Bardina, J.H. Ferziger, and W.C. Reynolds, AIAA Pap. N

80-1357~1980!.
@29# Y. Zang, R.L. Street, and J.R. Koseff, Phys. Fluids5, 3186

~1993!.
@30# K. Horiuti, Phys. Fluids9, 3443~1997!.
5-6


