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Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?:
A preliminary theoretical study for the Gaussian filtered Navier-Stokes equations
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This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation
repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-
scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is
shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incom-
pressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar
to one appearing in the Gaussian filtered Vlasov equation derived by Klin&€®mput. Phys68, 202(1987)]
and also to one derived recently by Kobayashi and Shimorfiehgs. Fluids15, L29 (2003] from the
tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the
numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a
seed of this numerical instability. An investigation concerning the relationship between the turbulent energy
scattering and the unstable term shows that the instability of the term does not necessarily represent the
backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large
eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can
be ideally accurate.
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[. INTRODUCTION in the numerical solution achieved using finite-difference
methods. This instability problem involved in the dynamic
In large eddy simulatiofLES) of turbulent flows, where eddy-viscosity-type model has been removed by a smoothing
large-scale flow structures are solved directly but small-scal@nd/or a clipping techniqué,12—14 that mollifies or elimi-
eddies are modeled, numerical instability which leads to nonnates the negative values of the eddy-viscosity coefficient.
physical oscillation or divergence of solution has sometime€\Iso, it is known that the tensor-diffusivity modg15-17
been observed. One of the well-known Origins of this instabehaves Unstably in certain situations such as channel flows
bility is the dispersive characteristics of the numerical meth2nd turbulent mixing layers where strong shears appear
ods used to solve flow equations. In LES, centered finitel9:11,17—13 This instability has been considered to be due
difference techniques which involve no artificial viscosity t itS incorrect near-wall scalingl7] or long-lived negative

are commonly adopted even in the convection terms in théilfoSIon taking place near a walll8]. Recently, in their

Navier-Stokes equations. That type of differencing is knownsmdy regarding a dynamic mixed moden] Kobayashi and

to be unstable when the grid resolution is not sufficientlysmmomu_r"{lg] have shown theoretically that in the viscous
. . .2 sublayer in a turbulent channel flow, the absolute value of the
high. In order to overcome this problem, the use of high-

order fully conservative schemés,2] and the adaptation of negative diffusion coefficient derived from the tensor-

hiah-order filteri hi q h b diffusivity term can be greater than the kinematic viscosity
tei?npfer d[egr 43ter|ng(or smoothing procedures have been at- coefficient, resulting in a negative total viscosity and conse-

) ) ) o quently leading to numerical instability.

Another known cause of this ngmerlcal instability is an |4 the present paper, we perform a theoretical study con-
unstable property of the subgrid-scakSGS models  cerning the Gaussian filtered Navier-Stokes equations and
adopted. The dynamic Smagorinsky moff], for instance, introduce an alternative candidate for the origin of the nu-
can predict both positive and negative eddy viscositiesmerical instability in the LES of near-wall turbulence. The
While the appearance of the negative viscosity allows theresent study is motivated by the filtering problem of the
description of the backscatter of kinetic enefglye inverse  Vlasov-Poisson system, first attempted by Kliria$,22. In
energy cascade in turbulent flows, the occurrence of whiclRef.[21], to overcome the filamentation problem, he derived
has been confirmef—11] by a priori tests with direct nu-  a filtered equation for collisionless plasma kinetics by apply-
merical simulatioDNS)], it unfortunately causes instability ing the Gaussian filter in the velocity space to the Vlasov-

Poisson system. Interestingly, although neither an approxi-

mation nor an assumption was made, the resulting formulas
*Email address: ida@icebeer.iis.u-tokyo.ac.jp have a closed form in terms of the filtered distribution func-
"Email address: ntani@iis.u-tokyo.ac.jp tion, that is, the resulting system is solvable without any
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modeling. However, the numerical solution given using thisity. This numerical scheme incorporates a filtering procedure
filtered system is, unfortunately, unstable if a numericalwith the Gaussian function in order to mollify the filamenta-
method other than a spectral method is employ&3]. This  tion [21] of the distribution functiorf, which is an infinitely
numerical instability is caused by an additional term in thefine structure resulting naturally from the fact that E¢b.
filtered Vlasov-Poisson system, a cross-derivative termand(2) have no diffusion mechanism, and cannot be resolved
yielded by the filtering, the numerical solution of which by, numerically using finite computer resources. This filtering
e.g., a finite-difference technique should be unstable and dprocess, applied only to the velocity space, is carried out by
verge. Because neither modeling nor an approximation ishe convolution

adopted in order to derive the filtered equation, this numeri- .

cal instability can be considered to arise only from the =y _ =" _

Gaussian filtering. We show in this paper that a similar cross- Fxv.t)= j L =wFOouhdu, ©
derivative term can be found in the filtered Navier-Stokes o

equations without adapting any SGS model, but with awhere(-) denotes the filtered quantitly(X) is the Gaussian
simple assumption on the streamwise velocity componenfilter function,
The derived cross-derivative term is similar also to that given

in the recent study of Kobayashi and Shimom[t8] con- 1 X2
cerning a mixed SGS model, a study by which we are also mex T oA2
motivated. They derived this term from the tensor-diffusivity

part of a mixed model, i.e., by adapting a SGS model, whilgyhich satisfiesX=” L (X)dX=1, andA is the filter width
we do not assume a particular SGS model. From this point ofssumed to be constant throughout this paper. The filtered

Kobayashi and Shimomura’s work. Furthermore, we point

out theoretically that the numerical instability which may be
caused by the cross-derivative term does not always corre-
spond to backscatter; namely, the instability we predict is
only due to the filtering, but not due to the physical process JE j—
fdv—1.

u=—ow

L(X)= , 4

of

ot

of of
+E(x,t)(%) =0, 5

Y ox

+

(backscatterin turbulent flows. P

X ©®

As we will mention in Sec. IV, the present findings are not
simply a numerical problem but raise a question about th%\s Klimas showed[21], Eq. (5) can be rewritten into a
feasibility of accurate LES. This numerical problem appears i = "
to indicate a performance limitation of current LES. closed form in terms of:

This paper is organized as follows: In Sec. I, we review — — — TR
and briefly reexamine the work by Klimas. In Sec. Ill, we ﬁ+vﬂ+E(x t)ﬂ_f__ zﬂ
perform theoretical investigations regarding the unstable ot oX "o IXdv’
characteristics of the Gaussian filtered Navier-Stokes equa- ) ] o .
tions under a wall-bounded flow condition. Section IV pro-Where the left-hand side of this equation is an advection

vides remarks concerning the feasibility of accurate (&S €quation corresponding to E@l) with the replacement

)

a limitation of current LES techniquie —f, while the term on the right-hand sidRHS) is an ad-
ditional term yielded through the filtering process. For the
Il. NUMERICAL INSTABILITY OF THE FILTERED convenience of readers, we show concretely the derivation of
VLASOV-POISSON EQUATION this additional term. This cross-derivative term is given from

the second term of Ed5) as follows:
In 1987, Klimas[21], based on a spectral method, pro-

posed a numerical scheme for the Vlasov-Poisson system, of of of
v— :j L(v—u)uadu= —f (v—u)L(v—u)&du

ot + of +E(x,t) ot 0 (1) ”
J— v— X —_— o]
at X v ' of 2 of
+vf L(v—u)&—xdu——[A L(v—U)a—X B
JE
&—X:J f(x,v,t)dv—1, 2 +A2f . 2 dus J'L (?fd
(v u)ax&u u+u (v u)ax u
and _
AZ( 9°f . af)
1 x=4 = vl -/,
—f f f(x,v,t)dvdx=1, Ixdu X
4 x=0
and thus,
which describes the kinetics of collisionless plasmas in the — -
phase spacex(v). Here, this system is normalized by the vﬂ =vﬁ+A2 o°f )
plasma frequency, the Debye length, and the thermal veloc- X X IXdv
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Here, we used where ¢ and s are the spatial coordinates parallel to

pr: pra (Ax,Av) and (—AXx,Av), respectively, andr is a positive
(_) = constant. This result is equivalent to E40), and the first
dv) v term on the RHS of Eq12) represents numerically unstable
) . inverse diffusion.
Unfortunately, the numerical solution of E() tends to Note that the cross-derivative term was derived without

be unstable when a .nLIJmerlicaI method, except for the Spec“ébplying any approximation and modeling, meaning that this
method(such as a finite-difference or a finite-volume teCh'numericaIIy unstable term is given not by an approximation

nique), is employed23]. Applying the coordinate transfor- o modeling, but by the Gaussian filtering only. Meanwhile,
mation of the magnitude of this term’s coefficient increases with the
filter width A, revealing that increasing\ to obtain a

2X=X1=Y1,  20=X1ty1, ©)  smoother profile off makes the governing equation more
the cross-derivative term is rewritten as unstable.
prre Frra IIl. INVESTIGATION OF A NAVIER-STOKES CASE
2 2 2
- =A"——-A"—. 10 o
IXdv ay2 x> (19 Filtering approaches have been attempted not only for
Y1 1

plasma kinetics analysis but also for turbulent flow compu-
The last term of this equation, having a negative coefficientfations. In particular, the LES of turbulence has employed
represents inversg@r retrogradg diffusion, which is known various kinds of SGS stress models which are constructed
to produce an unstable numerical solution using a finitebased on a filtering approach and statistical properties of tur-
difference method or others. This nature of the crossbulence[11,24. In this section, we show theoretically that
derivative term leads to numerical instability and a resultingthe filtering process may, at least in a certain case, also give
divergence of solution. Note that this instability is not physi-rise to numerical instability in flow computations.
cal but only numerical. The true solution of E) should The Navier-Stokes equations for incompressible fluid
not diverge, becaudedepending on the pure advection equa-flows are expressed as
tion (1) is an invariant, and the inequality

B B aui+aujui_ o'?p+ Ju; for 12123
min(f)=<min(f) <max(f) <max(f) e ok Vawgaxg o T
is always true(Note that the Gaussian function is positively U
defined. If a nonpositive defined filter such as the spectral — =,
cutoff filter is used, this relation does not always hpld. IXi
We can prove Eq(10) by a more intuitive manner. First, ) ) ) o
we express the term in a finite-difference form, where Einstein’s summation convention is assumed, and

=u;(X1,X5,X3,t) is the velocity componenf is the pressure
divided by the constant fluid density, amds the kinematic

fog—fogq frig—f_i_
L1 S - Lol viscosity. Applying a spatial filter to these equations, one

Pf(x,v) 2AX 2AX

-l obtains
EVER limay_—oav—0 A0 ,
where ot oaxg X Vo’!xjaxj (13
i j=f(x+iAx,v+jAv). or
Consequently, we rewrite this as follows: gup duu;  ap AUy am
JR— = — _+ —_
- — at o ax ax Laxax, ox 14
J f(X,v) i (f1'1_2f0’0+f_1‘_1)
- = im -
dIXdv Ax—0Av—0 4AXAU TijEUin_Uin
. (f_— 11— 2ot i 1) with
- lim .
AX—0Av—0 4AxAv -
&Ui
As a result, we found o =0 (19
I
%t ?f P?f . .
_ A2 A2 4 A2y (12) where;; is the so-called SGS stress tensor which generally

xXdv 982 9s2’ needs to be modeled.
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uju, _aU1+A2 .
=u;— ———+Bu
X Lox, IX10Xp B2

B ous —
+——| AZ—+x,u3].
&xg( Xy 2 3)

In the present paper, in order to simplify discussion we
assume that the filter is applied only in tlxg direction.
Furthermore, for a while we focus our attention only on one
term in Eq.(13),

duiuy  JuqUg  duyU;  dusUy
o + +

X 9%, Xy X3 Rewriting this as
au au au Juiu;  — duy Pu,  apx B du:
o 2 2 2 qe MG M geg TN P o 0B s
IXq Xy JX3 IX; IXq IX10Xy Xy X3 0Xy
L . . . . BXp— — AUy a°u; dB au;
which is the filtered convection term in the equation digy + B_2U3: u; =14 ( A2B—— ¢ 298 _3) ,
and suppose X3 ax; IX10Xy X3 Xy
. the total SGS stress far; can be represented as
Ui = BXp With B= B(X1,X3) (17 ! P
. . o . Ity Uy A2 Jp dug 20
is true at an instant. The velocity field described by &q) x| = IXL9%s IXs 9%y (20

represents a shear flow such as that forming near a solid wall

parallel to the k;,x3) plane and located at,=0. In Ref. In order to confirm this result, we show here an alterna-
[10], which investigates the energy cascade in turbulent walltje derivation of Eq.(20). Yeo [25] and otherg26] have
bounded flows and analyzes the performance of eddygerived (and extended27]) a relation equation, which can

ana priori test of near-wall turbulent flows by DNS in order

to investigate the energy transfer between the GS and SGS o Z A gy ghp
components constructed by filtering DNS data. They have ab—ab= RPN (21
shown that the dissipation of the streamwise component of n=1 T dx" dx

kinetic energy 0%/2 in the present cagprovides a dominant
contribution to the total dissipation of kinetic energsee

; L : dy is an independent variable afandb. This equation is
Fig. 6 of Ref.[10]). This is why we pay much attention to andy . ; .
te?m (16). In w[hat]follows, we gerfon”?] gxplicitly the convo- Very interesting because the RHS terms contain only filtered

lution in Eq.(16) in order to have a closed formula, and then functionsa andb. Using this and assuming=x,, we have
discuss the characteristics of the resulting formula.

Wherem indicates the Gaussian filtering in thedirection

Substituting Eq(17) into Eq. (16) yields - =A2,8% (22)
1 Xy’
Ju;u au — If———- _
iy 1
= — |+ Bus+ —(U3X5). 18 Ju
an ( 2(9X1 :3 2 0"X3( 3 2) ( ) TlZZAZBWZ, (23)
2
Recalling Eq.(8), the first term on the RHS is rewritten into n
a closed form as Uz
T13= AZIB (9_)(2 . (24)
- _ —
(ﬂxz%) =E%+A2 9"Uy , These results combined with Eq45) and(19) recover Eq.
X4 X4 IX10X5 (20).
We analyze here characteristics of Eg0). Using Eqgs.
where we use (17) and(19), Eq. (20) can be reconstructed as
— a7i 7%u; au;
Up=Uj. 19 L _a2p 9271 72
1=Up (19 %, A ﬁ&xlr9xz +U P (25
Also, the last term of Eq(18) can be rewritten into a closed A2 g0
form because U= — ﬁ_ (26)
Xy Xy
—(U3X2)=A2%+X2U3- The last term of Eq(25) represents the advection of in
29 the x5 direction and hence does not change the amplitude of

u;. This term may be solved stably using a numerical
As a result, we have method for the convection terms with a sufficient grid reso-
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lution. The first term on the RHS of the same equation is a@reatments for preventing the instability are necessary in

cross derivative ofi;, being quite similar to one appearing these casekb,9,11-14,17-19
in the filtered Vlasov equatio(v) and also to one derived by ~ Finally, we briefly discuss
Kobayashi and Shimomurd 9] from the tensor-diffusivity
term. Namely, this term should be numerically unstable. The au;
coefficient of this term increases Asincreases, correspond- (ulﬁT) for i#1,
ing to the fact that LES tends to be more unstable when a .
larger grid width is assumed. This coefficient also increases = ) ) ] )
as the absolute value ¢ increases, implying that a strong whlch_ is a conyectlon term in the flltgred Nawer-Stpkes
shear is more apt to cause numerical instabilye should ~ €duations fou; (i# 1) in a nonconservative form. Substitut-
note here that the cross-derivative term is unstable in thé'd assumptior(17) into this, and performing the convolu-
cases of boti8>0 and8<0, since the cross-derivative can tion explicitly or by employing Eq(21), we obtain
be decomposed into two diffusion terms having different
signs, as shown in Eq10).] Actually, numerical instability —au, oy
in LES has frequently been observed in flow computations (ulﬁ)
involving strong shears, as mentioned in Sec. |. The present 1
result is consistent with this fact.

Let us consider the energy dissipation due to the SG3he last term of this equation is a cross derivative of the

stress(20). The energy transfer far2/2 between the GS and dependent variable and is almost the same as one derived
the SGS components is describeé by previously. This result shows that the filtered equationsifor

(i#1) may also be unstable in the case we have considered.

—
2 d U;

U — 4 A2B— 2
U19x, IX10Xp (29

duy
€1~ leﬂ_)(j' (27) IV. SUMMARY AND DISCUSSION

whose negative value indicates forward scatter, whereas tfbe The theoretical results given in the preceding section can

positive value indicates backscatter. Substituting E28)— © ;ummanzed as fOHO\.NS: .At least in a certain case, the
(24) into Eq. (27) and rewriting using Eq(15) yield application of the Gaussian filter to the Navier-Stokes equa-

tions results in the appearance of a numerically unstable term
— even though no SGS model is adopted. This unstable term
PN s S R ‘ (28) does not always give rise to backscatter of kinetic energy,
IXy IX3  IXg Xy implying that the numerical instability that the cross-
derivative term may cause does not correspond to the physi-
This reveals that, can be either negative or positive. If, for cal process, backscatter; this conclusion may explain the nu-
example,du, /dxz=0 is true at a certain location, Ee8)  merical results provided by Kobayashi and Shimon{u:gj
reduces there to to investigate the signs of the eddy viscosity and of the ef-
fective viscosity derived from the tensor-diffusivity term.
&US The present findings raise the significant question whether
— a numerically stable SGS model can be an ideal model for
describing turbulence, or, in other words, whether a SGS
— model that can provide ideally accurate results is numerically
which is negative wherus/dx; (the spanwise derivative of staple. Our theoretical results indicate that it is in principle
the spanwise velocity compones positive, but is positive  possible that a numerically unstable term appears through the
when dus /x5 is negative. filtering process. Namely, if one wants to obtain an accurate
We provide here a note on assumptid®). Careful read- LES result under the condition of E¢L7), he must be faced
ers may think that the velocity profile assumed in Ey) is  with the numerically unstable equatiof®0) and(29), which
sufficiently smooth and hence need not be modeled. Thisannot be solved stably by ready-made finite-difference
natural question can be solved by considering the discussesthemes or others. This difficulty makes a limitation of cur-
Gaussian filtering to be the secondary filtering; that is, theent LES manifest.
velocity u; is one already smoothed out by a primary filter- There may be two paths toward overcoming this diffi-
ing. In several SGS model®.g., the scale similarity28],  culty: the adaptation of a kind of artificial smoothers, which
the dynamic Smagorinsky[5], and dynamic mixed may violate an accurate solution but has been attempted, and
[29,20,3Q models, a twofold filtering is adapted based on the construction of a stable and accurate solver for the nu-
the scale invariance of small-scale structures in turbulenmerically unstable equations. The latter might be extremely
flows [11]. In fact, the numerical instabilities in LES have difficult to realize, but will be a challenging task.
been observed especially when the dynamic Smagorinsky or Furthermore, the present findings may be useful in con-
the tensor-diffusivity models are employétie latter model sidering the numerical instabilities of the existing SGS mod-
does not employ an explicit filter but corresponds to a firstels. For instance, we anticipate that the unstable property of
order approximation of the scale-similarity model when thethe filtered Navier-Stokes equations may play a role in the
Gaussian filtering is assumd@7]), so that some special LES using the pure scale-similarity model whose unstable

£1= = (BAY 52,
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